New Finite Rogers-Ramanujan Identities

نویسندگان

  • Victor J. W. Guo
  • Frédéric Jouhet
  • Jiang Zeng
چکیده

We present two general finite extensions for each of the two Rogers-Ramanujan identities. Of these one can be derived directly from Watson’s transformation formula by specialization or through Bailey’s method, the second similar formula can be proved either by using the first formula and the q-Gosper algorithm, or through the so-called Bailey lattice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type

New short and easy computer proofs of finite versions of the Rogers-Ramanujan identities and of similar type are given. These include a very short proof of the first Rogers-Ramanujan identity that was missed by computers, and a new proof of the well-known quintuple product identity by creative telescoping. AMS Subject Classification. 05A19; secondary 11B65, 05A17

متن کامل

A generalization of Kawanaka’s identity for Hall-Littlewood polynomials and applications

Recently, starting from two infinite summation formulae for Hall-Littlewood polynomials, two of the present authors [7] have generalized a method due to Macdonald [9] to obtain new finite summation formulae for these polynomials. This approach permits them to extend Stembridge’s list of multiple qseries identities of Rogers-Ramanujan type [12]. Conversely these symmetric functions identities ca...

متن کامل

The Rogers - Ramanujan Identities , the Finite General Linear Groups , and theHall

The Rogers-Ramanujan identities have been studied from the viewpoints of combinatorics, number theory, a ne Lie algebras, statistical mechanics, and conformal eld theory. This note connects the Rogers-Ramanujan identities with the nite general linear groups and the HallLittlewood polynomials of symmetric function theory.

متن کامل

Partial-sum Analogues of the Rogers–ramanujan Identities

A new polynomial analogue of the Rogers–Ramanujan identities is proven. Here the product-side of the Rogers–Ramanujan identities is replaced by a partial theta sum and the sum-side by a weighted sum over Schur polynomials.

متن کامل

A Determinant Identity that Implies Rogers-Ramanujan

We give a combinatorial proof of a general determinant identity for associated polynomials. This determinant identity, Theorem 2.2, gives rise to new polynomial generalizations of known Rogers-Ramanujan type identities. Several examples of new Rogers-Ramanujan type identities are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006